
'< ',

mm



LIBRARY

OF THE

MASSACHUSETTS INSTITUTE

OF TECHNOLOGY



Digitized by the Internet Archive

in 2011 with funding from

Boston Library Consortium Member Libraries

http://www.archive.org/details/correspondenceprOOfish





working paper

department

of economics

A CORRESPONDENCE PRINCIPLE FOR SIMULTANEOUS
EQUATION MODELS

NOV 27 1967

Franklin M. Fisher . i LIBRARY

Number 9 November 1967

Ce/^y /

massachusetts

institute of

technology

50 memorial drive

Cambridge, mass. 02139





A CORRESPONDENCE PRINCIPLE FOR SIMULTANEOUS
EQUATION MODELS

by

Franklin M. Fisher

Number 9 November 1967

rECH.

NOV 27 1967

DEWEY LIBRARY

Ce/oy /

This paper was largely written during my tenure of a Ford
Foundation Faculty Research Fellowship in Economics, while visiting
the Hebrew University. The ideas here discussed grew out of discussions
with Edwin Kuh and research carried on jointly with him. The views
expressed in this paper are the author's sole responsibility, and do
not reflect those of the Department of Economics, nor of the Massa-
chusetts Institute of Technology.



I

RECEIVED

MAY 8 1968



1. Introduction

This paper presents a set of conditions which, it is argued, must be

satisfied by any properly specified and estimated simultaneous equation

model. Those conditions are derived by considering the implications of the

view that simultaneous models are limiting approximations to non-simultaneous

models in which certain time lags approach zero. The results lead immediately

to a battery of easily applied tests which such a model must pass. Those

tests have two important properties. First, they apply to the interaction

of sets of equations rather than to single equations, and therefore test

aspects of a model which are generally not tested in the specification and

estimation of individual equations. Second, the tests apply both to the

model as a whole and to any submodel formed by deletion of one or more

equations and treatment of the corresponding endogenous variables as if they

were predetermined. Since the functioning of submodels is tested, our results

can be used to locate problems of specification.

A byproduct of our results is that any model (or submodel) satisfying

our conditions lends itself readily to simulation and forecasting experiments

with the values of the current endogenous variables generated by an iterative

technique of extreme computational simplicity . This is an important feature

in large models containing nonlinear identities or other nonlinearities

.

Nevertheless, the tests developed here are applicable to any simultaneous

model, linear or nonlinear, and should be applied as a matter of standard

econometric practice.

The theoretical development of our tests is followed by a discussion

of their application to a revised version of the Klein-Goldberger model.

532217



-2-

2. Simultaneity as a Limit

A well-known and highly convincing position on the nature of

simultaneity in econometric models is that such models are only approximations

to the true state of affairs. In fact, causation takes time, and the

reactions given by the equations of the model truly occur not instantaneously

but with a very small time lag. Unfortunately, however, data do not come to

us sufficiently finely divided in time to allow us to observe such fast-

moving reactions, so we take simultaneous instantaneously-holding relations

as approximations, valid between the observations which nature allows us.

Time lags are thus considered negligible provided they are sufficiently

small.

The consequences of this position for parameter estimation when

observations occur at discrete points of time separated by an interval much

larger than that in which the true reactions take place have been discussed

2
in the literature. In fact, however, this particular variant of the above

view does not seem a very realistic one, We very seldom have observations

on the value of a particular variable at precise discrete moments in time,

3
and, if we do, we seldom use the observations in that form. Much more common

is the case in which the observations either by necessity or by choice are

in the form of averages or sums over a non-zero time interval. Simultaneous

This view has been discussed at length by Bentzel and Hansen [2].

The basic position on causation has been vigorously maintained by H. Wold
in several works, e.g., Wold and Jureen [11].

2
Strotz [10]; but see also Gorman [6].

3
Price quotations are an exception to the first part of the statement

but usually not to the second.
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equation models are usually models concerning such averages.

If then, one accepts the view that reactions between economic variables

really take place in a short but non-zero interval, say the "reaction interval,"

whereas observations are on averages over a longer interval, say the

"observation interval," what are the consequences as the reaction interval

goes to zero and the observation interval remains fixed? The consequences

for estimation remain to be worked out, so far as I am aware, although it

seems likely that for some appropriate assumptions on the process generating

the disturbances, the usual simultaneous equation estimators will emerge in

the limit.

In the present paper, however, we are not concerned with estimation

directly but with a rather different problem. We shall let the reaction

interval go to zero, for fixed observation interval and for fixed values of

the disturbances and exogenous variables and ask for necessary and sufficient

conditions that the relations among the endogenous variables generate the

same relations among their averages in the limit, save that the generated

relations are to be simultaneous. We shall then ask what those conditions

imply about the convergence of certain iterative methods of solving the model

to obtain predicted values of the endogenous variables.

We are thus using the fact that the static structure assumed to relate

current averages of endogenous variables must be generated by a dynamic

process to obtain restrictions on that static structure. This is an appli-

cation of Samuelson's "Correspondence Principle" to econometrics.

To put the matter slightly differently, considerations of continuity

Samuelson [9]
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lead one to believe that models with extremely short time lags should yield

approximately the same behavior as models with no time lags. We examine the

conditions that this should be true when, in both models, the observations

are onaverages of the variables involved in the true relationships.

Thus, suppose that at any time, t, the simultaneous version of the

model is given by the vector equations:

(2.1) y(t) = G(y(t), z(t) , u(t))

where y(t) is an M-component vector of endogenous variables; z(t) is A-

component vector of predetermined variables; and u(t) is an M-component

vector of disturbances. G is (after estimation) a known vector-valued

2
function. Identities have been substituted out of the model.

We divide the unit time interval into n equal small sub intervals,

3
each of length A9 = 1/n. Since we want to preserve the notation y(t) for

the value of y at the instant t, we shall rewrite (2.1) as:

(2.2) y(t) = G(y(t), z(t) , u(t)),

I am indebted to James S. Duesenberry for the perceptive suggestion
(which prompted this study) that since very short time lags ought not to make
much difference, simulation might well proceed as though such lags existed.
The sense in which this is true is developed in the remaining sections

.

2
Identities must be substituted out because they obviously do_ hold

instantaneously. If there are other equations of the model which are somehow
believed to be truly instantaneous, they should be substituted out also before
applying the procedures developed below. For convenience of exposition, we
shall assume either that there are no such equations or that such substitution
has already been made.

3
Equality of the sub intervals is a matter of convenience only.
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where

_ n n

(2.3) y(t) H E y(t + kA6)A0 = - E y(t + kA9).
k=l

n
k=l

We are interested in what happens when A 6 approaches zero, when the true

model is in fact not (2.1) or (2.2) but

(2.4) y(t + kA6) = G{y(t + (k-l)AG), z(t) , u(t) } (k = 1, . . . , n)

.

We shall ask what are the necessary conditions on G that (2.2) hold in the

limit. Clearly, these will be some sort of stability conditions.

Now, it will be noticed that we have assumed the true model to have

only a single lag. In fact, of course, there is no reason why this must be

the case. The simultaneous model, (2.1) or (2.2), in a particular case might

very well be the limit of a distributed lag model as the length of all lags

approach zero. Moreover, this might be true even if the tests derived below

showed that (2.2) cannot come from a single lag model such as (2.4). Indeed,

it is generally so that one can invent some distributed lag model which

generates (2.2) in the limit, provided one is not restricted to models in

2
which the effect of a particular variable has the same sign for all lags.

The justification for looking at only a single lag model is as follows,

i - r
1

Note that when this occurs, y(t) approaches

not use this fact in the present paper.

y(t + 6)d0. We shall

2
In the case of a linear model, it is known that "bunching" or

"smearing" of effects does not affect stability if all effects are nonnegative
or in certain other cases. See Bear [1].
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Suppose that a particular simultaneous model fails our tests. Then that

model can be the limiting case of some nonsimultaneous model but not of a

single-lag model such as (2.4). To rely on this, however, is to take the

position that small lags are negligible, but only if they are unequal and,

indeed, only if they are unequal in certain specific ways. This is a possible

position, but not a comfortable one.

To put it another way, if one is to ignore small lags, one wants to

be able to ignore them no matter how they are distributed. One wants the

simultaneous approximation to be appropriate no matter how effects are

"bunched" or "smeared" over very small time intervals, provided some reasonable

continuity of behavior is preserved. Since it is generally not possible to

examine conditions in general distributed lag models, we must content ourselves

with examining single lag models in which all effects are bunched into a

single time period. Necessary conditions that the simultaneous model be

approached by such a single lag model will obviously also be necessary

conditions that the exact lag structure not matter to the simultaneous

2
equation approximation. Those conditions are thus clearly necessary if one

is to take the position that simultaneous models are limiting cases of non-

simultaneous ones in which very short lags and their distribution have been

neglected.

One would hardly care if one's simultaneous model could not come
from a distributed lag model with the same variable having wildly different
effects at two very close points in time.

2
Under some additional strong restrictions, they will also be

sufficient. See Bear [1].



-7-

3. The Full Model: Linear Case

We begin with the case in which the model is linear, as it is here very

easy to see what is involved and as useful results can be proved which are

stronger than those available in the general case.

Since we are taking G linear, the true model generating the obser-

vations may be written as:

(3.1) y(t + kA6) = Ay(t + (k-l)A6) + b (k = 1, . . . , n)

where A is a constant M x M matrix and b is a constant M-component vector

embodying the effects of z(t) and u(t) which we shall assume constant over

the observation period.

Substituting (3.1) into (2.3), we obtain:

n n-1
(3.2) y(t) = I y(t + kA6)A6 = A Z y(t + kA6)A6 + nbAf

k=l k=0

= Ay(t) + b + A{y(t) - y(t + nA6) }A6

= Ay(t) + b + A{y(t) - y(t+l)}A(

This appears a strong assumption. We make it for two reasons. First,
we want to concentrate on the internal dynamics of the endogenous variables.
Second, in the absence of this assumption, it will be rare that simultaneous
approximations in the averages will ever be appropriate, so that some such
assumption is implicitly made in simultaneous models. In effect, what is

involved is assuming that the effects of predetermined variables and random
shocks are spread evenly over the observation period. Put this way, the

assumption obviously is generally made in any model not dipping into the
internal affairs of an observation period, which is the usual state of affairs,
Otherwise complexities similar to those arising in solutions of mixed
difference-differential equations can occur.
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It is clear that this approaches the simultaneous version:

(3.3) y(t) = Ay(t) + b

in the limit if and only if:

(3.4) Lira {y(t) - y(t + nA9) }A6 = 0.

Ae+o

Since y(t) is independent of A6, this only involves the behavior of

y(t + nA0)A6.

Since the simultaneous version (3.3) is supposed to be a theory of

the determination of y(t), we may assume (I - A) nonsingular. Suppose that

the characteristic values of A are all distinct. Then the solution of the

difference equation (3.1) implies:

-1
M

(3.5) y(t + nA6) = (I - A) b + E K.A
n
n.

j-1 J J J

where the A. are the characteristic values of A, the n . are the corresponding

characteristic vectors, and the K. are constants depending on y(t)

.

For (3.4) to be satisfied no matter what y(t) happens to be (that is,

for initial conditions to wash out) , it is thus necessary and sufficient in

the present case that:

This assumption is invariably made in simultaneous equation models.
As it happens, it can be derived in the present case from slightly different
considerations. If (I - A) were singular, the solution of the difference
equation (3.1) for y(t + nA6) would involve a term going to infinity at least
as fast as n, and (3.4) could not hold.
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x
n

(3.6) Lim X.A9 = Lira «- =0 (j = 1, . . ., M)

A9-*0
J

n-*»
n

This implies:

(3.7) |X j
< 1 (j = 1, . . ., M)

where Ix.l denotes the modulus of X.. It is also easy to show that this

condition is implied even if A has multiple roots.

Moreover, since (I - A) would be singular if unity were a characteristic

value of A, we have shown that a necessary and sufficient condition for the

validity of the simultaneous approximation in the limit in the linear case

is:

(3.8) \\ \
< 1, A 4 1 (j - 1, .... M)

4. Digression: Solution by Iteration in the Linear Case

We may briefly point out that if the conditions (3.8) are satisfied,

then solution of the system for the values of the endogenous variables can

be accomplished by a simple iterative process. This is of only moderate

importance for the linear case, but its extension to the nonlinear case

(below) is important and it is thus worth taking up briefly.

Define:

(4.1) y* = (I - A) \

and for any scalar parameter a, < a <_ 1, consider the iteration:
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(4.2) y±+1
= cx(A

yi
+ b) + (1 - a)y

±
= (ctA + (1 - cODy.. + ob.

It is easy to show that, if this converges, it converges to y . Further,

it will converge if and only if all characteristic values of B = (aA + (1 - a) I)

are less than one in modulus

.

Now, let p be a characteristic value of B. There then exists a A.

(a characteristic value of A), such that:

(4.3) p = aX + (1 - a) (j - 1 M)

.

Write A. as c. + d.i where i is the square root of minus one and c. and d.
J J J J J

are real. Then (3.8) implies:

(4.4) c
2
+ d

2
< 1; c. < 1 (j = 1, . . ., M)

From (4.3) and (4.4), for any a strictly between zero and one:

(4.5) |p.|
2

= {etc. + (1 - a)}
2
+ (ad )

2
= a

2
(c

2
+ d

2
) + (1 - a)

2
+ 2ac.(l- a)

< a
2
+ (1 - a)

2
+ 2a(l - a) = {a + (1 - a) }

2
= 1 (j - 1 M)

We have thus shown that, in the linear case, the validity of the

simultaneous approximation implies the convergence of the iteration (4.2) for

any a chosen with < a < 1. Of course, convergence will frequently also

occur with a = 1, but this is not guaranteed. Clearly, also, the choice of

a will typically affect the speed of convergence.



-11-

5. The Full Model; General Case

In this section, we generalize the results for the linear case so far

as possible, although the results obtained are necessarily weaker because of

the impossibility of writing a general solution to general nonlinear

difference equations. (Note, incidentally, that our results for the linear

case do not carry over directly into local results for the nonlinear case.

A condition such as (3.4) does not have to hold locally to be valid in the

large.)

Let y be a fixed point of the mapping (2.2); that is,

(5.1) y* = G(y*, z(t) , u(t)) i g(y*)

A
where the second equality defines g(y ). Since (2.2) is supposed to provide

a theory of the determination of y(t) , we shall assume that for any given

A
values of z(t) and u(t) , y exists and is unique (although its value of course

depends on those of z(t) and u(t)).

Next, define, for any M-component vector, x:

(5.2) g
k
(x) = g{g

k"1
(x)}; g°(x) = x (k = 1, . . ., ad inf.).

The underlying true relations to which (2.2) is the simultaneous

The assumption of uniqueness can be relaxed to the assumption that
all but one y can be ruled out by prior considerations. This would suffice
for our purposes, but would slightly complicate the discussion in the text.

Note that the assumption is the natural extension of that of the nonsingularity
of (I - A) in the linear case. Cf. Christ [3, p. 213].
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approximation are:

(5.3) y(t + kA0) = g{y(t + (k-l)A6)} = G{y(t + (k-l)A9), z(t), u(t) }

(k = 1, . . . , n) .

It is clear that the simultaneous approximation will be valid in the limit

if and only if:

(5.4) Lim y(t) = Lim y(t) = y*,

A9-K) n-*»

for any initial y(t). In other words:

LimJ^- E g
k
(y)[ = y*

n-Xx>) k=l

for every y. Obviously, for any finite y, we can also write:

LimJ-^- Z g
k
(y)^ = y*

n-~ k=0

, 2
for every y.

If some kind of regular behavior is imposed on z(t) and u(t) , it

may suffice to require that (5.5) hold only for y = y(t) in some appropriately
defined neighborhood of y (see the preceding footnote). In this case, our
results below hold also only in such a neighborhood.

If there exists a y, such that y = g (y) for some finite integer j,
then (5.6) follows directly from (5.5) without appeal to the fact that
(y/n+1) approaches zero. In general, this will be the case.
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Since a sum can converge only if its last term approaches zero, this

means that for any y, g (y) can at most go to infinity slower than n. In

the linear case, this led immediately to the conclusion that g (y) was

at least bounded if not convergent (see (3.7)), but this does not follow in

the general case. For the general case, (5.6) is itself the necessary and

sufficient condition that simultaneity be the limiting approximation of the

true system.

6. Digression: Solution by Iteration in the General Case

Now suppose that (5.6) holds and consider the following class of

iterative schemes. Starting at an arbitrary point, yn , choose some integer

n j> 1, and define:

1
n

k
(6.1) y±+1

=
—ft

£ g (y
±
) i = 0, 1, . . ., ad inf.

k=0

In view of (5.6), for any given y. and any arbitrary e > 0, there exists an

n sufficiently large that, defining y by (6.1),

(6.2) |yx
- y I

< e|y - y

where |x| denotes the length of x, for any vector x. Furthermore, if y_ is

restricted to lie in a compact set, then the requisite n can be chosen inde-

pendent of yn .

Now, for any yn , consider the compact set S(y
n ) = {y : |y - y | <_

i *i
|y_ - y |}. Choose e < 1. Choose n sufficiently large to make (6.2) hold

with y_ replaced by any y e S(y
n).

Now perform the iteration (6.1). By

(6.2), y is in S(y~) , whence repeated application of (6.2) shows y e S(y^),



-14-

i = 0, 1, . . . , ad inf. Moreover,

(6.3) |y. - y*| < E
±
|y - y*| (i = 1, . . ., ad inf.)

ft

so the iteration converges to y .

While the n chosen in the above depends on y , in practice y_ can

always be taken to lie in a bounded set (since the number of values tried

in actual iteration will be finite) , so there is some n which will work, for

all actual yn .

Thus an iteration based on an unweighted average of the g (y)

ft

converges to y . What about an iteration using a weighted average? We saw

above that in the linear case, the iteration:

(6 - 4) yi+i
= ^V + u-01^

was guaranteed to converge for every choice of a with < a < 1, provided

our conditions were satisfied. For a = — , this is equivalent to the iteration

(6.1) with n = 1. Now consider the weighted average:

n
k

(6.5) y = Z w (n)g
K
(y),

k=0
K

where

n
(6.6) w, (n) > 0, E w (n) = 1.

K
k=0

k

This form of iteration is a well-known method of numerical analysis.
It is the Jacobi iterative method with a damping factor.
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Defining y as the unweighted average of g (y) , . • ., g (y) , we have:

(6.7) g (y)

— A
In view of (5.6), y approaches y as n becomes infinite. Further, we have

already observed that:

(6.8) Lim R
ffl = 0.

n+1
n-KD

It follows that provided that w, (n) approaches (1/n+l) sufficiently fast

for all k = 1, . . . , n as n becomes infinite, y will also approach y .

Of course, such a condition is not necessary. In view of the fact

that (5.6) must hold for any initial y, it will suffice that w, (n) approach

zero for k = 0, . . . , h, with h some finite number and w, (n) approach

(1/n-h) sufficiently fast for k = h+1, . . . , ad inf. Further, if g (y)

k
itself approaches y , not even this is necessary.

Now, if y does in fact approach y for all initial y, choose an

n > 1, and consider the iteration:

n
k

(6.9) y = I w (n)g
K
(y ) (i = 0, 1, . . . , ad inf.).

1+1
k=0

K 1

By an argument identical to that given for the convergence of (6.1) above,

for large enough n, this will converge to y for any y„ in a bounded set.

Consider then, weighted averages in the form (for example):

(6.10) w
k
(n) =~l+ (f)f(n) (k = 1, . . ., n)

n

wn (n) = 1 - Z w, (n)
U

k=l
k



-16-

for d some suitably chosen constant and f(n) a scalar function which

approaches zero as n goes to infinity and does so sufficiently fast as to

make y converge to y . Choose an a between zero and one, set n = 1, and

df(l) = a - 1/2. We obtain the iteration (6*4)

.

Thus, for the general case, we have shown that a generalized form of

the iteration (6.4) converges if the simultaneous approximation is a valid

one. We have not shown that for some a that iteration itself must converge

(and, a fortiori , not that it must converge for all a between zero and one,

as occurs in the linear case), but, of course, appropriate choice of a may

in fact lead to convergence. In any case, the unweighted average of the

g (y) must so converge, and this is very easy to check, computationally (for

example, by the iteration suggested in (6.1)).

7. The Results Strongly Stated:
Normalization Rules and Submodels

What have we shown so far? If simultaneous equation models are

considered as averaged approximations to nonsimultaneous models in the way

described, we have shown that a necessary property of such models is the

convergence of the sum (5.6), for given values of z(t) and u(t), to the

values of the endogenous variables required for forecasting or simulation

purposes. Further, if the model is entirely linear, we obtain a condition

In general, one rather expects that it will, particularly in view of

the results for the linear case. Since the unweighted average of the g (y)

converges, one suspects that an artful choice of a weighted average of a
k k+1 * k

particular g (y) and g (y) will yield a vector closer to y than g (y)

itself, and that it may be possible to continue this. I have been unable to

prove this, however.
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on the characteristic roots of the matrix of coefficients of the current

endogenous variables.

We can go considerably beyond this in two respects, however. The

form in which (2.1) is written requires a choice of normalization rules,

such that each equation of the model contains a different current endogenous

variable on the left-hand side and such that each current endogenous variable

appears on the left-hand side of exactly one equation. It is clear that the

choice of normalization rules involved in writing (2.1) is not unique.

Moreover, it is perfectly possible that the unweighted average (5.6) converges

for one choice of normalization rules and fails to converge for another. If

all that were involved in our results were experimentation with algorithms

for simulation, we might experiment with different choices of normalization

rules hoping to find one such choice for which (5.6) held.

Our results are stronger than this, however. We did not merely find

that a properly specified simultaneous model must have the property that for

some choice of normalization rules the unweighted average (5.6) converges.

We showed that such iteration must converge in such a model for the particular

choice of normalization rules corresponding to the true, nonsimultaneous

system (5.3) which is being approximated . There is no liberty as to the

choice of normalization rules in the equations of the true system and none

in the application of our results.

Another way of putting this is to observe that, in practice, every

equation in a simultaneous system has a natural normalization rule (that of

the corresponding equation of the true, nonsimultaneous system). The

Recall that identities have been substituted out,
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consumption function has consumption on the left, the investment demand

function has investment demand, and so forth. Every equation of the true

model represents the behavior of decision makers who set the value of a

particular endogenous variable in response to the stimuli provided by their

perceptions of the values of other variables a moment ago. Apparent ambiguity

as to the natural normalization rule in a particular equation stems not from

the simultaneity of the system but from ignorance of the nature of the true

dynamic process whose static approximation is the simultaneous system

considered. In practice, the natural normalization rules for most equations

are perfectly obvious, as the examples just given indicate. Our results

2
apply with the equations written in their naturally normalized forms.

If the fact that our results are required to hold for a particular

choice of normalization rules imposes a strong condition on well-specified

econometric models, the considerations to which we now turn impose much

stronger conditions. Moreover, those conditions are directly useful in

locating specification errors.

Simulation experiments with large models frequently take the follow-

3
ing form. The behavior of part of the model is to be investigated, so the

remainder of the model is suppressed. This is done by dropping some subset

The only serious exceptions to this take the form of the classic
ambiguity as to whether price or quantity should appear on the left-hand
side of a supply or demand equation. That ambiguity reflects the highly un-
satisfactory state of our knowledge of the way in which prices are formed
and quantities demanded or supplied in disequilibrium.

2
Whether the naturally normalized forms are the best ones to use for

estimation, however, depends on other considerations, principally the effect
on the properties of the estimators used. Practically nothing is known about
this issue. On this problem, see Fisher [5] and Mitchell and Fisher [7].

3
See, for example, De Leeuw [4].
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of the equations and taking the variables appearing on the left-hand side of

those equations as exogenous for the sake of the experiment. Such an

experiment, which of course is designed to show how parts of the economy, as

represented by the model, react when taken in isolation, correspond to hypo-

thetical real world situations in which the government, say, steps in and

controls the level of certain variables rather than letting them adjust as

in the period over which the model was estimated.

Now consider such an experiment. In our notation, this amounts to

removing one or more of the elements of y(t) from the list of endogenous

variables and adding them to the list of variables included in z(t), at the

same time removing the appropriate equations from (2.1) and changing the

definition of G, accordingly. The resulting submodel is then treated as

though it were complete, the moved variables being assumed given from outside.

The clear (and reasonable) implication of this, however, is that the

equations of the submodel being tested are the same and have the same parameter

values whether or not that submodel is included in the larger model. This

means that the submodel must be considered a valid simultaneous approximation

to the corresponding submodel of the true dynamic model (5.3). It is then

clear that (5.6) must hold for the submodel . Note that this is not implied

by the validity of (5.6) for the full model, for then the process generating

successive g (y) is not the same as it is when some elements of y and functons

of g are deleted. It is an implication of the position that a model can be

put together from separate equations.

That implication, however, is a very strong one. We have just shown

that the following is a necessary condition that a simultaneous equation

model be well-specified. Not only must (5.6) hold for the model as a whole,
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but it must also do so for any submodel generated by deleting from the model

one or more of the equations and treating the corresponding left-hand side

variable as predetermined. The strength of this requirement may perhaps be

best seen by noting that, in the linear case, it is equivalent to the require-

ment that the characteristic values of every principal submatrix of A obey

(3.8).

M
There are in principle 2 -1 submodels to be examined in this require-

ment, but at least M, and generally many more of them will either trivially

meet it or need not be separately considered so that the computational

burden involved may not be excessive, given the simplicity of computation

of (5.6). We shall have more to say on this below.

We have thus developed a set of very strong criteria which must be

obeyed by any simultaneous equation model which is capable of being

considered an averaged approximation to a true dynamic model with vanishingly

2
short time lags. Those criteria should be applied to every simultaneous

1
M /m\

m
£ = (1 + 1) . There is obviously no point in checking submodels

j=0W
which are not simultaneous. This means that the M single equations of the

model need not be considered, nor should models consisting of essentially un-
related equations with no feedback loops. Further, there is no point in testing

separately a submodel containing two or more blocks of endogenous variables
with no instantaneous feedback relating them (i.e., for which the relevant
coefficient matrix is block-triangular) . Such a submodel has the required
property if and only if its component parts do. (Note that even if the full
matrix is not block-triangular, it may become so when one or more equations
are suppressed.) The submodels which are involved in a nontrivial way are

generally those which might plausibly be involved in simulation experiments
such as those mentioned above.

2
Of course, those criteria need only be obeyed for the true values of

the parameters and (by continuity) for some set of points in the parameter
space not a set of measure zero and close to the true parameters , Except in

pathological cases where the true parameters just barely satisfy the criteria
(for example, if the true matrix A in the linear case has a characteristic
value with modulus exactly unity) , those criteria will be satisfied for all
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equation model immediately after it is estimated. If the model meets those

criteria, then simulation and forecasting with the model will be computational-

ly extremely easy.

8. But What If It Doesn't?

The case in which the model passes our tests is thus a happy one.

The potential usefulness of our results, however, is much greater in the

case of a model which fails so to pass them.

Suppose, then, that a particular submodel fails to have the property

(5.6). According to our results this is not simply a matter of bad luck.

There is something wrong with the submodel. Moreover, the test that is failed

in such a circumstance is a test of the entire submodel itself, rather than

of its component equations taken separately. Each separate equation may

appear entirely reasonable, fit the data well, and so forth, and yet if the

submodel fails our test, something is wrong with at least one equation. So

far as I am aware, this is the only internal (i.e., not forecasting) test

which has this property. Since tests which do use forecasts are not very well

developed, and since equation specifications tend to be chosen one at a time,

this is an important property. Thus, if a forecasting test fails, the problem

must be somewhere in the model, but where is hard to pin down. If our test

points in the parameter space sufficiently close to the true parameters.
Sampling fluctuations may lead to violation of our criteria even if the true
model satisfies it, however; we shall return to this in the following section.

"Trovided of course that one agrees that simultaneous models are
averaged approximations to nonsimultaneous ones. If the world really is

simultaneous, none of this applies. Recall that equations believed to be
truly instantaneously valid are treated as identities for our purposes and
substituted out before applying our tests.
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fails for a particular submodel, there is a problem in that submodel

.

What, then, can such a problem be? There are two possibilities.

Either every equation of the submodel is correctly specified, but sampling

problems have led to a set of parameters for which (5.6) is violated, or else

there is misspecification in at least one equation. In either case, the

submodel with the particular parameter values estimated is not capable of

being the simultaneous approximation to the corresponding dynamic submodel

.

What should be done? Unfortunately, our results provide a tool of

diagnosis, not of cure. However, some general remarks may be in order,,

The failure of our test for a particular submodel should cause the

investigator to think, hard again about the specification of that submodel*

If he is confident about that specification, he may prefer to think that

the difficulty is caused by the particular set of parameters estimated from

the sample. This view can fairly easily be verified (for small submodels)

by seeing if changing the parameters by not unreasonable amounts leads to a

position where our test is passed. (What should then be concluded about the

true parameters is, however, a more difficult matter.) Since what is

involved is the internal structure of the relationships among current

endogenous variables, such tinkering need not involve all the parameters of

the submodel.

' In the linear case, the inferential problem is that of testing whether

"Ttfote, however, that misspecification of the predetermined parts of
an equation of the submodel can perfectly well affect the internal dynamics
of the endogenous variables in the model as estimated. If the problem is

not simply a sampling one, therefore, attention must be given to the
specification of entire equations, not just to the parts relating to current
endogenous variables.
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the charateristic roots of various matrices satisfy (3.8). As the matrices

involved are not symmetric, I know of no way to do this analytically. Monte

Carlo experiments (making use of the asymptotic distribution of the parameter

estimates) could of course be performed in both the linear and nonlinear

cases

.

We now go on to the case in which it is decided that sampling

fluctuations do not account for the failure of the model to pass our tests.

In this case, something is wrong with the specification of the model.

If the problems of the model are not too severe and widespread, our

results can be used to localize them. In the first place, it is wise to

begin the testing with the smallest submodels. The fact that a given sub-

model does or does not pass our test carries, in general, no implication

about whether a larger submodel including the given one will pass it.

Further, (5.6) can be satisfied for the full model without being so for

every submodel. Nevertheless, if a given small submodel fails (5.6), some

adjustment must be made in that submodel. This being so, there is no point

in going on to test larger submodels including the given one until such

adjustment has been made, since that adjustment may perfectly well affect

the ability of the larger submodel to satisfy (5.6).

Moreover, suppose a submodel consisting of a particular R equations

satisfies (5.6). Suppose, however, that many or all of the submodels

obtained by deleting one of the R equations and substituting a particular

Except for the case in which the larger submodel consists of two or
more smaller ones with no feedback loop connecting them. As indicated in
an earlier footnote, such block-triangular cases need not be tested separate-
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R+lst equation fail to satisfy (5.6). It does not follow that the difficulty

lies in the R+lst equation involved (because our results give necessary but

not sufficient conditions for submodels to be healthy) , but such a phenomenon

will certainly arouse suspicion as to the location of the diseaseo A similar

statement holds for submodels differing from each other by substitution of

more than one equation. Assuming the original specification of the model to

have been not too far off the mark in too many places, artful combination of

economic reasoning with the battery of localized tests provided by our results

can locate difficulties which might otherwise remain hidden.

9 . Experience with an Actual Model

To gain experience with the tests described above, we applied them

2
(in part) to an extended version of the Klein-Goldberger model. The model,

its coefficients, and the values of the variables used as starting values

are exhibited in the Appendix, Tables 1-4.

The model has 23 equations (excluding the identities) , so the number

of submodels which might potentially have to be tested is of the order of

23
2 . In fact, the number which actually should be separately tested is far

lower. In about half an hour of IBM 7094 time our program for finding sub-

models to be tested lists roughly 2,000 such submodels. From inspection of

The computations here reported were performed at the M.I.T.
Computation Center. Programming was done and computation supervised by J,

Timothy McGettigan. This part of the research was supported by National
Science Foundation Grant GS-1376.

2
Slightly adapted, with kind permission, from Norman [8] This

particular model was used because of the availability of already written
programs to do part of the work.
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the results, it appears likely that there are a good many more, but probably

not more than 4,000 at the very most. Since our interest does not center

directly on this model, we did not attempt an exhaustive listing when there

turned out to be so many.

It should be noted that a perfectly reasonable looking 12-equation

model set up for test purposes has less than ten separately testable sub-

models. Clearly, the number depends intimately on the structure of the

model as well as on the number of equations . Typically the number is

relatively small if after the removal of zero or one or two equations the

model breaks into a block-triangular structure.

Despite the high number of submodels encountered and the machine time

required to find them, it is not at all infeasible to test them. With n = 50,

the iteration (6.1) was tried (for the simple set of starting values given)

for the full model and about 140 of the submodels, This took somewhat less

than nine minutes of 7094 time. Were our principal interest in the model

rather than in the test, it would clearly have been possible to test all the

submodels encountered without a prohibitive expenditure of machine time.

As new-generation computers become available, it will become possible to do

this for ever larger models, although it is impossible to say without

experimenting how much machine time would presently be required to test

fully a model such as the Brookings quarterly model. Even if machine time

requirements are too high to perform tests on all submodels, it is still

with n = 10, it took less than four minutes, but many of the sub-
models which converged for n = 50 diverged for n = 10 and did so very rapidly,
The 9-minute figure given in the text is conservative because of an error
affecting one case and consuming a nonnegligible amount of time.



Erratum:

A CORRESPONDENCE PRINCIPLE FOR SIMULTANEOUS
EQUATION MODELS

by Franklin M„ Fisher

Page 26, line 9: "annual earnings" should be "wage and salary
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possible (and eminently desirable) to test the full model and those submodels

in whose separate functioning and economic sense one is particularly interested.

In the tests performed, convergence was obtained for the full model

and for all but 34 of the submodels. In general, convergence was extremely

rapid, occurring on the first iteration. Divergence took the form of overflow

2
of preset requirements and was also relatively rapid.

The submodels for which the iteration diverged are listed in Appendix

Table 5. It will be noted that equations 6 and 7 (corresponding endogenous

variables: hours worked and annual earnings) form part of every such submodel.

This tentatively suggests that these equations ought to be re-examined,

although such a conclusion cannot be a strong one without the results of a

complete set of tests. (The iteration did converge for approximately 50 sub-

models containing these two equations.) Note that the two equations are

related in a way that makes economic sense.

In closing, we may note that the fact that the full model itself

allows convergence means that the iteration (6.1) provides a computationally

easy way to generate solution of the model for forecasting and simulation

purposes. This is, of course, a general property for models passing our tests.

Note that convergence of (6.1) does not imply that the limit point is

y . This must be separately tested. No cases of convergence to other points
were encountered in the tests.

2
As stated in an earlier footnote, the test was also performed for n = 10

,

Here additional submodels diverged. There seems little doubt in the case of
the 34 submodels diverging for n = 50 that the difficulty is intrinsic and
not due to the choice of n, although some further experimentation would be
required to make this absolutely certain.
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Table 1

DEFINITION OF VARIABLES USED IN MODEL

Consumption of durables, billions of 1954 dollars.

Consumption of nondurables and services, billions of 1954
dollars

.

Residential construction, billions of 1954 dollars.

Stock of inventories, billions of 1954 dollars.

Imports, billions of 1954 dollars.

Index of hours worked per week, 1954 = 1.00.

Wage and salary workers, millions.

Wages and salaries and supplements to wages and salaries,
billions of 1954 dollars.

Annual earnings, thousands of dollars.

Corporate saving, billions of 1954 dollars.

Corporate profits, billions of 1954 dollars.

Rental income and net interest, billions of 1954 dollars.

Gross national product, billions of 1954 dollars.

Personal disposable income, billions of 1954 dollars.

Proprietors' income, billions of 1954 dollars plus P and IVA.

Indirect taxes, billions of current dollars.

Corporate profits taxes, billions of current dollars.

Personal taxes, billions of current dollars.

Contributions for social insurance, billions of current dollars.

Business transfers, billions of current dollars.

Government transfers, billions of current dollars.

[cont'd]
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zz P
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G
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E12 SD

E13
I

R

EH V/B

Implicit GNP deflator, 1954 = 1.00.

Inventory valuations adjustment, billions of current dollars.

Investment in plant and equipment, billions of 1954 dollars.

Yield on prime commercial paper, 4-6 months, per cent.

Capital consumption allowances, billions of current dollars.

Average yield on corporate bonds (Moody's), per cent.

Exogenous Variables

Net interest paid by government, billions of current dollars.

Government wages and salaries, billions of 1954 dollars.

Implicit price deflator for imports, 1954 » 1.00.

Government employees, millions.

Self-employed workers, millions.

Total labor force, millions.

Subsides - current surplus of government enterprise, billions
of current dollars.

Dummy variable, for 1929-1946, 1 for 1947-1962.

Average discount rate at all Federal Reserve Banks, per cent.

Year-end ratio of member banks' excess to required reserves.

Government expenditures, billions of 1954 dollars. Sr

Exports, billions of 1954 dollars.

Statistical discrepancy, billions of current dollars.

Value of last twenty years investment.

Average weekly benefits for unemployed.
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Table 2

EQUATIONS OF THE MODEL

1 Cd - a
x Y «= (.7 + a-,) Cd_

x
- .7 a

x Y.j + %

2 Cn - a4 Y = ag Cn^ + a-

3 R - all Y « als r_ a + a13 R_ x
+ a14

4 (1 + a16 )H • aj B X - (aj B + als ) H_ x
+ a17

5 Im - a18 X + a19 p = a1B Pm + &-, Q Im^ + a^

6 X - aa 3 R - a^ Nw - a^h = Wg + .95(X - Wg). x
+ a^ I

9

- aa3 Ng - Ns + .95(Nw - Ng + Ns)_ 1
- .95 ^4 k.a + a^

7 h • 839 w + aj 7 Nw » - ajjs w.
a
+ i,, (Nl - Ns) + 833

2 W - aa9 X - (1 - Ca,,) Us +830 (W - Wg)^ + ag!

9 w + 833 Nw « iw. 1
+ 833 (Nl - Ns) + 833 (P.! - P_ 2 ) + 334

10 pSc + IVA - 833 (pPc + IVA - Tc) » agg (pPc - Tc - pSc)^ + a40

11 pll - pPc - IVA - a41 p X a42 (p(H - Pc) - IVA).! + a43

12 pnr - a44 pR - a44 pi a4B (r- r_
a ) + a46 (pnr)_ x

+ a47

13 X - Cd - Cn - R - H + Ira = H_! + I + G + E

Ell

14 pY - pX + pSc + IT + Tc + PT + SI - GT + IVA « GS - SD - D +ID

15 pll - pX + pW'+ pllr + IT + BT « - D + GS - SD

16 IT - Cj pX J Cx

[cont'd]
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17 Tc - C4 pre C3

18 (1 - O PT - Cb pY = Cg

19 SI - C8 (PY + PT) - G,

20 BT - ag 7 pX = ag 8 BT_ X + % 9

21 GT + Cg Nw = Cg (Nl - Ns) + C10 WB + Cn

22 pW - wh Nw =

23 IVA - agg p = - ag S p_i + aga

24 I = a, (X - Wg).i + a. ^ + (-95 + a,) I., + a^

25 rs - %! rd + ag 8 Re.,. + ag 3 Du & %«,

26 D - a4e Z?{I + R) + *49 Du + ^o

27 r » agg rs + a^ r. x + 837

In each case the equation was solved for the correspondingly-

numbered endogenous variable (see Table 1) before testing.
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Table 3

VALUES OF COEFFICIENTS

ai - a2 a a2 9 - a59 Ci - Cn

1 0.2314 29 0.4956 1 0.6470
2 -0.1042 30 0.1307 2 0.0061
3 -0.4618 31 -1.2517 3 0.0591
4 0.2502 32 -2.1800 4 0.0807
5 0.7226 33 6.7879 5 -0.0175
6 -0.1171 34 2.1602 6 0.0330
7 0.0656 35 0.1693 7 0.0200
8 -0.2113

*

36 0.8116 8 -0.0000
9 -0.5900 37 0.4015 9 0.0517

10 0.9319 38 0.9009 10 -0.0000
11 0.0468 39 -0.8893 11 0.0778
12 -0.0462 40 0.0024
13 0.3983 41 0.0096
14 -0.1228 42 0.9092
15 0.1347 43 0.0627
16 0.4050 44 0.0752
17 -2.4301 45 -0.1084
18 0.0331 46 0.9131
19 -1.6649 47 -0.0471
20 0.3477 48 0.0492
21 -0.1214 49 0.8556
22 0.3344 50 -0.1411
23 2.2442 51 1.1452
24 1.8814 52 -0.0082
25 -0.5863 53 0.5331
26 -0.4050 54 -0.5107
27 -1.8349 55 -4.5050
28 11.4307 56

57

58
59

0.0002
0.0017
0.6149
0.0066
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Table 4

VALUES OF VARIABLES USED FOR INITIAL CONDITIONS

Endogenous Variables

1 C
d

2 C
n

3 R

4 H

5 I

6 h

7 N
w

8 W

9 w

10 S
c

11 P
c

12 n
r

13 *X

14 Y

15 n

16 IT

17 T
c

18 PT

19 SI

20 BT

21 GT

22 P

23 IVA

24 I

25 r
s

26 D

27 r

Present

1.49

11.33

0.87

0.30

1.09

11.16

3.76

8.90

12.16

0.42

1.67

2.07

18.18

14.48

4.33

0.70

0.14

0.26

0.02

0.06

0.09

.57

0.05

2.33

5.85

0.86

5.21

Lagged

1.41

10.73

1.18

1.02

12.11

3.65

8.06

11.42

.43

1.65

1.87

16.98

13.10

3.93

.13

.05

.58

-.04

2.10

5.09

[cont'd]
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Exogenous Variables Present Lagged

.10 .0

0.86 .82

0.573

0.35 .34

1.03 1.03

4.94

-0.01

0.00

5.00

2.05

2.96

0.03

18.47 17.53

0.58 .58

.576
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N •
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Table 5

SUBMODELS TESTED AND DIVERGING (n = 50)

(Numb<jrs correspond to Tables 1 and 2)

2 4 6 7

1 3 6 7 8

1 6 7 8 10

1 6 7 10 19

1 2 4 5 6 7

1 3 5 6 7 9

1 4 5 6 7 8

1 5 6 7 8 10

1 5 6 7 10 19

2 5 6 7 10 19

2 6 7 8 10 19

2 6 7 10 11 12

3 5 6 7 8 19

1 2 3 6 7 10 11

1 2 6 7 8 10 11

1 5 6 7 10 11 12

2 3 5 6 7 10 11

2 4 5 6 7 10 19

2 4 6 7 10 11 12

2 5 6 7 10 11 12

3 5 6 7 8 10 11

1 2 3 4 6 7 8 19

1 2 4 6 7 8 10 11

1 4 5 6 7 8 10 11

2 3 5 6 7 8 9 10

3 4 6 7 10 11 12 19

1 2 3 5 6 7 8 10 11

1 2 3 5 6 7 10 11 12

1 2 4 5 6 7 8 10 19

2 3 4 5 6 7 10 11 19

2 3 4 6 7 8 9 10 11

2 3 4 6 7 8 10 11 12

2 4 5 6 7 10 11 12 19

3 4 5 6 7 8 10 11 19
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